Copied to
clipboard

G = C25.4S3order 192 = 26·3

1st non-split extension by C25 of S3 acting via S3/C3=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C25.4S3, C247Dic3, C24.77D6, (C23×C6)⋊7C4, (C24×C6).3C2, C32(C243C4), C6.86C22≀C2, (C22×C6).202D4, C2.3(C244S3), C23.97(C3⋊D4), C23.39(C2×Dic3), C223(C6.D4), (C23×C6).101C22, (C22×C6).372C23, C23.318(C22×S3), (C22×Dic3)⋊4C22, C22.55(C22×Dic3), (C2×C6)⋊8(C22⋊C4), (C2×C6).569(C2×D4), C6.88(C2×C22⋊C4), C22.98(C2×C3⋊D4), (C2×C6.D4)⋊13C2, (C2×C6).203(C22×C4), (C22×C6).138(C2×C4), C2.24(C2×C6.D4), SmallGroup(192,806)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C25.4S3
C1C3C6C2×C6C22×C6C22×Dic3C2×C6.D4 — C25.4S3
C3C2×C6 — C25.4S3
C1C23C25

Generators and relations for C25.4S3
 G = < a,b,c,d,e,f,g | a2=b2=c2=d2=e2=f3=1, g2=c, ab=ba, ac=ca, ad=da, gag-1=ae=ea, af=fa, bc=cb, gbg-1=bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, cg=gc, de=ed, df=fd, dg=gd, ef=fe, eg=ge, gfg-1=f-1 >

Subgroups: 1048 in 506 conjugacy classes, 119 normal (9 characteristic)
C1, C2, C2, C3, C4, C22, C22, C22, C6, C6, C2×C4, C23, C23, C23, Dic3, C2×C6, C2×C6, C2×C6, C22⋊C4, C22×C4, C24, C24, C2×Dic3, C22×C6, C22×C6, C22×C6, C2×C22⋊C4, C25, C6.D4, C22×Dic3, C23×C6, C23×C6, C243C4, C2×C6.D4, C24×C6, C25.4S3
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, C23, Dic3, D6, C22⋊C4, C22×C4, C2×D4, C2×Dic3, C3⋊D4, C22×S3, C2×C22⋊C4, C22≀C2, C6.D4, C22×Dic3, C2×C3⋊D4, C243C4, C2×C6.D4, C244S3, C25.4S3

Smallest permutation representation of C25.4S3
On 48 points
Generators in S48
(1 35)(2 10)(3 33)(4 12)(5 42)(6 47)(7 44)(8 45)(9 28)(11 26)(13 22)(14 31)(15 24)(16 29)(17 21)(18 30)(19 23)(20 32)(25 36)(27 34)(37 46)(38 43)(39 48)(40 41)
(1 26)(2 36)(3 28)(4 34)(5 46)(6 40)(7 48)(8 38)(9 33)(10 25)(11 35)(12 27)(13 30)(14 17)(15 32)(16 19)(18 22)(20 24)(21 31)(23 29)(37 42)(39 44)(41 47)(43 45)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)
(1 11)(2 12)(3 9)(4 10)(5 44)(6 41)(7 42)(8 43)(13 24)(14 21)(15 22)(16 23)(17 31)(18 32)(19 29)(20 30)(25 34)(26 35)(27 36)(28 33)(37 48)(38 45)(39 46)(40 47)
(1 28)(2 25)(3 26)(4 27)(5 37)(6 38)(7 39)(8 40)(9 35)(10 36)(11 33)(12 34)(13 18)(14 19)(15 20)(16 17)(21 29)(22 30)(23 31)(24 32)(41 45)(42 46)(43 47)(44 48)
(1 23 43)(2 44 24)(3 21 41)(4 42 22)(5 13 12)(6 9 14)(7 15 10)(8 11 16)(17 40 33)(18 34 37)(19 38 35)(20 36 39)(25 48 32)(26 29 45)(27 46 30)(28 31 47)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)

G:=sub<Sym(48)| (1,35)(2,10)(3,33)(4,12)(5,42)(6,47)(7,44)(8,45)(9,28)(11,26)(13,22)(14,31)(15,24)(16,29)(17,21)(18,30)(19,23)(20,32)(25,36)(27,34)(37,46)(38,43)(39,48)(40,41), (1,26)(2,36)(3,28)(4,34)(5,46)(6,40)(7,48)(8,38)(9,33)(10,25)(11,35)(12,27)(13,30)(14,17)(15,32)(16,19)(18,22)(20,24)(21,31)(23,29)(37,42)(39,44)(41,47)(43,45), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48), (1,11)(2,12)(3,9)(4,10)(5,44)(6,41)(7,42)(8,43)(13,24)(14,21)(15,22)(16,23)(17,31)(18,32)(19,29)(20,30)(25,34)(26,35)(27,36)(28,33)(37,48)(38,45)(39,46)(40,47), (1,28)(2,25)(3,26)(4,27)(5,37)(6,38)(7,39)(8,40)(9,35)(10,36)(11,33)(12,34)(13,18)(14,19)(15,20)(16,17)(21,29)(22,30)(23,31)(24,32)(41,45)(42,46)(43,47)(44,48), (1,23,43)(2,44,24)(3,21,41)(4,42,22)(5,13,12)(6,9,14)(7,15,10)(8,11,16)(17,40,33)(18,34,37)(19,38,35)(20,36,39)(25,48,32)(26,29,45)(27,46,30)(28,31,47), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)>;

G:=Group( (1,35)(2,10)(3,33)(4,12)(5,42)(6,47)(7,44)(8,45)(9,28)(11,26)(13,22)(14,31)(15,24)(16,29)(17,21)(18,30)(19,23)(20,32)(25,36)(27,34)(37,46)(38,43)(39,48)(40,41), (1,26)(2,36)(3,28)(4,34)(5,46)(6,40)(7,48)(8,38)(9,33)(10,25)(11,35)(12,27)(13,30)(14,17)(15,32)(16,19)(18,22)(20,24)(21,31)(23,29)(37,42)(39,44)(41,47)(43,45), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48), (1,11)(2,12)(3,9)(4,10)(5,44)(6,41)(7,42)(8,43)(13,24)(14,21)(15,22)(16,23)(17,31)(18,32)(19,29)(20,30)(25,34)(26,35)(27,36)(28,33)(37,48)(38,45)(39,46)(40,47), (1,28)(2,25)(3,26)(4,27)(5,37)(6,38)(7,39)(8,40)(9,35)(10,36)(11,33)(12,34)(13,18)(14,19)(15,20)(16,17)(21,29)(22,30)(23,31)(24,32)(41,45)(42,46)(43,47)(44,48), (1,23,43)(2,44,24)(3,21,41)(4,42,22)(5,13,12)(6,9,14)(7,15,10)(8,11,16)(17,40,33)(18,34,37)(19,38,35)(20,36,39)(25,48,32)(26,29,45)(27,46,30)(28,31,47), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48) );

G=PermutationGroup([[(1,35),(2,10),(3,33),(4,12),(5,42),(6,47),(7,44),(8,45),(9,28),(11,26),(13,22),(14,31),(15,24),(16,29),(17,21),(18,30),(19,23),(20,32),(25,36),(27,34),(37,46),(38,43),(39,48),(40,41)], [(1,26),(2,36),(3,28),(4,34),(5,46),(6,40),(7,48),(8,38),(9,33),(10,25),(11,35),(12,27),(13,30),(14,17),(15,32),(16,19),(18,22),(20,24),(21,31),(23,29),(37,42),(39,44),(41,47),(43,45)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48)], [(1,11),(2,12),(3,9),(4,10),(5,44),(6,41),(7,42),(8,43),(13,24),(14,21),(15,22),(16,23),(17,31),(18,32),(19,29),(20,30),(25,34),(26,35),(27,36),(28,33),(37,48),(38,45),(39,46),(40,47)], [(1,28),(2,25),(3,26),(4,27),(5,37),(6,38),(7,39),(8,40),(9,35),(10,36),(11,33),(12,34),(13,18),(14,19),(15,20),(16,17),(21,29),(22,30),(23,31),(24,32),(41,45),(42,46),(43,47),(44,48)], [(1,23,43),(2,44,24),(3,21,41),(4,42,22),(5,13,12),(6,9,14),(7,15,10),(8,11,16),(17,40,33),(18,34,37),(19,38,35),(20,36,39),(25,48,32),(26,29,45),(27,46,30),(28,31,47)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)]])

60 conjugacy classes

class 1 2A···2G2H···2S 3 4A···4H6A···6AE
order12···22···234···46···6
size11···12···2212···122···2

60 irreducible representations

dim111122222
type+++++-+
imageC1C2C2C4S3D4Dic3D6C3⋊D4
kernelC25.4S3C2×C6.D4C24×C6C23×C6C25C22×C6C24C24C23
# reps16181124324

Matrix representation of C25.4S3 in GL5(𝔽13)

10000
012000
00100
00010
000012
,
120000
01000
001200
00010
00001
,
120000
012000
001200
000120
000012
,
10000
012000
001200
00010
00001
,
10000
012000
001200
000120
000012
,
10000
09000
00300
00090
00003
,
80000
00100
012000
00001
000120

G:=sub<GL(5,GF(13))| [1,0,0,0,0,0,12,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,12],[12,0,0,0,0,0,1,0,0,0,0,0,12,0,0,0,0,0,1,0,0,0,0,0,1],[12,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,12],[1,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,12],[1,0,0,0,0,0,9,0,0,0,0,0,3,0,0,0,0,0,9,0,0,0,0,0,3],[8,0,0,0,0,0,0,12,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,1,0] >;

C25.4S3 in GAP, Magma, Sage, TeX

C_2^5._4S_3
% in TeX

G:=Group("C2^5.4S3");
// GroupNames label

G:=SmallGroup(192,806);
// by ID

G=gap.SmallGroup(192,806);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,56,477,422,6278]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=e^2=f^3=1,g^2=c,a*b=b*a,a*c=c*a,a*d=d*a,g*a*g^-1=a*e=e*a,a*f=f*a,b*c=c*b,g*b*g^-1=b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,d*e=e*d,d*f=f*d,d*g=g*d,e*f=f*e,e*g=g*e,g*f*g^-1=f^-1>;
// generators/relations

׿
×
𝔽